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SUMMARY

Structural synthesis has been defined as the rational directed
evolution of a structural configuration, which in terms of a defined
criterion, efficiently performs a set of specified functional pur-
poses. Structural synthesis is essentially a problem in the program-
ming of interdependent activities involving three types of considera-
tions; namely, a specified set of requirements, a given technology
and a criterion by means of which choices can be made between various
designse

The structural configuration employed as an example in this
study is an integrally stiffened waffle plate used primarily for
aero-space structures. The criterion of design selection employed
is the total weight of the waffle. (See Figure 1)

The synthesis technique developed as a result of this research
provides a starting point for the optimization of other engineering
systems which have the following characteristics:

a, relative minima

be non-linear inequality constraints
Ce a multitude of side constraimts
d. non-linear merit function

This note reports the successful development of a synthesis
capability for symmetric waffle plates based on the technology
presented herein.

INTRODUCTION

Analysis as a tool of structural design is well known. However,
the really effective use of an analysis requires that rational methods
of directed redesign be developed. As with any structural system,
there has been a tendency to regard the problem as being solved when a
reliable method of analysis has been developed, while in fact the
availability of a reliable method of analysis is only a prerequisite
to tackling the task of design synthesis.



Structural synthesis has been defined as the rational directed
evolution of a structural configuration which, in terms of a defined
criterion, efficiently performs a set of specified functional purposes,
Structural synthesis is essentially a problem in the programming of
interdependent activities involving three types of considerations;
namely, a specified set of requirements, a given technology and a
criterion by means of which choices can be made between various designs,

The structural design cycle can be thought of in terms of three
main phases:

3¢ Establish a trial design consistent with the
requirements,

be Carry out an analysis based on this trial design
using the accepted technology.

Co Based on the analysis, modify the trial design such
that the merit function is improved,

In the past, the redesign phase has been based primarily on an
artful combination of experience, judgment and often courage, Conse-
quently the redesign process is not clearly defined, 4Also, the number
of trips around the design cycle has been limited by the available
manpower and the time required., The huge strides that have been made
in the digital computing field have substantially reduced the time to
complete one design cycle., The problem of stating mathematically the
philosophy or basis on which redesign decisions are made is the major
obstacle to the development of methods of structural synthesis,

Specifications and Requirementis

The design load system is made up of several sets of mechanical
and thermal loads. When the design load system involves a multiplicity
of load conditions, the minimm weight optimum design will be a
balanced design for the entire design load systeme. It should be
recognized that if an optimum design is sought using each design load
condition separately, several distinct incompatible designs will result,

The basic requirement of the structural system is that it must
maintain its structural integrity while being subject to the design
load systems The design is inadequate and the structure is said to
fail if the structural behavior does not remain within the confines
of the stated limits. What constitutes failure must be carefully
defined and this can be expected to vary from one design task to
another,

In addition to the behavioral requirements there exist several
specifications which the design parameters must fulfill. These are
called side constraints and arise for reasons such as

as analysis limitations
be compatibility constraints
Ce fabrication limitation



Technology

The method of analysis to be used in any synthesis program is a
prerequisite to development of the synthesis capability. Existing
1iterature contains methods of analysis which adequately predict the
behavior of a substantial class of structural systems.

Criterion

In many important structural design areas the minimization of
weight is important. It should be noted that a minimum weight basis
for evaluating merit is probably the most readily stated and it is
certainly of great importance in the design of flight vehicles.

The concepts of structural synthesis in no way necessitate the
use of the weight function as the merit function. If another such
measure, iece, total cost, thermodynamic or aerodynamic performance
is expressible mathematically, it may be used in place of the total
weight with no conceptual changes in the synthesis process described
hereine

SYMBOLS
Amn participation coefficient of assumed mode
a x dimension of plate
b y dimension of plate
bL lower bound on bx
bm upper bound on bx
bx spacing of stiffeners
Ca shear buckling coefficlent
D, bending stiffness - x direction
D, bending stiffness - y direction
D, torsional stiffness
Dp pth design parameter
E modulus of elasticity
H total height of stiffener plus skin
K, lower bound on ts

K lower bound on tw



Nx intensity of resultant normal force - X direction
ny intensity of resultant shear force - x and y directions
Ny intensity of resultant normal force - ¥y direction
Ri i*h random number

tw stiffener thickness

ts sheet thickness

w z component of displacement

W total weight of a waffle plate

Y tensile yield stress

a. aspect ratio

u Poisson'!s ratio

o} weight density

FUNDAMENTALS OF STRUCTURAL SYNTHESIS
Basic Definitions

At the outset, certain parameters of any synthesis problem are
set as design requirements. A1l those parameters which are not pre-
determined by the requirements are called design parameters, These
independent variables are then determined by the Synthesis program
such that the merit function assumes the optimal value, Consider an
nth order Space where the design parameters are plotted along the
coordinate axes defining the space, This Space will be referred to
as a design parameter Spaces Note that it differs from the space
frequently employed in optimization studies in that the merit function
i3 not one of the coordinate axes. Instead contours of constant merit
function are plotted in this spacee Therefore, it is possible for the
gradient to the merit function to assume a unique and distinect value
for each point in the design parameter space. The coordinates of any
point fix certain values to the independent design parameters, thus
completely specifying the design of a structural system,

Also present in this Space are behavioral constraint surfaces
generated by the limitations on the structural behavior of the system,
If a design point is on a behavioral constraint surface, the structure
is on the verge of failure in one of the defined modes. This type of

a design point is called a bounded pointe Associated with each defined



failure mode there exists a behavioral constraint surface for each load
condition of the design load systems The collection of these surfaces
which separates the acceptable region of the design space from the un-
acceptable region is called the composite constraint surface. This
composite surface is continuous but, in general, the gradient to the
composite surface is discontinuous at the junction of any two component
surfaces, If any design point is above the composite surface in the
sense that the design is adequate to sustain the loads, the design is
conservative and this point is called an acceptable free point. If

any design point is below the composite surface, the structure will not
sustain the loads and the point is in the region of violation and the
design is unacceptablee. Note that it is possible for a design point to
be bounded and unacceptable if it is on any constraint surface and below
the composite surface. (See Fig. 2)

Behavior Functions

The behavior of the structure is tested or examined through the
mechanism of a behavior function. A behavior function is a mathe-
matical expression relating the coordinates of the proposed design
and the design requirements to the behavior of the structure, If
the behavior function assumes its limiting value the structure is on
the verge of failure. If it is within its limits, the structure can
successfully sustain the loads, while if the behavior function is
beyond its limits the structure has failede The most general matrix
expression of the behavior functions for a single load condition is
as follows:

By (Dp)
L B (@) } ) :
g, (D)
If the values of the behavior functions are to be examined for

more than one load condition, they can be displayed as colurmms of a
rectangular arraye
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If the following relationships holds

[L]f [BF(DP)] 5[[;] )

where [I,J and [U ] are the lower and upper bounds,



the design is said to be adequate, otherwise the design is unacceptable,.
Note that an upper bound of five load conditions was used in Eqe (1)
This is arbitrarily selected as the upper bound for this study,

The quantity ED 2 is a column vector of design parameters specifying
the coordinates of- Pthe proposed point in the design parameter space,

Weight Functicn

The total weight of the structure, used as the sole criteriocn of
design selection, can also be expressed as a function of the design
parameters, In general, it is written as:

W = }i p; £, (Dp) (3)

The limitations on the design parameters may be expressed mathe=-
matically as follows:

m] s %] 5 {n] @

General Problem

The mathematical statement of the synthesis of a structural system
may now be summarized as follows:

Given p. and the design load system [N] as well as the design
requirerents iDUE ’ zDifn, (L] ana [U] .

Find ED % such that
— |p

b () s (n)

[r] s [wrop) s [v]

W = f p; £ (Dp)

and

and

assumes a minimum value,



Design Modification

The first step in any design problem is the establishment of an
adequate trial design. Successful modification of the design can be
accomplished by moving in the design parameter Space, such that the
merit function does not increase, For simplicity, the motion is
restricted to straight lines and can be stated as follows:

(1+1) E (1) 7 3
D = D + t
L% 1% . v U ()
where
i‘t ? are the direction cosines of the straight line
? of travel
t is the distance travelled
and the i superscript is the design cycle counters

A major aspect of the development of methods of structural synthesis
is the selection of proper directions and distances of travel in design
parameter space. The following is a list of some of the available methods:

Directions

a., random - employ a random number generator to develop the
direction cosines

be semi-intelligent - orient a line in the design parameter
space emanating from this current design to a
predetermined point, e.ge, point of equal weight
or zero weight. This method was used in Reference
1, for the three bar truss problem.

c. intelligent ~ steepest descent.
Distances

a., arbitrary - fixed increment or a random increment

be accelerated - select a fixed increment and move that
distance, If the new point is acceptable
double the distance and repeat this
doubling until the design is in the region
of violation. At this time halve the total
distance of travel back to an already
acceptable point. Place the design in
permanent storage and restart from this new
point with the original fixed incremente.
Use the doubling and halving scheme until
the design point has converged to a con-
straint surface.
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ce exact - solve for the distance to a neighboring
constraint surface or a point on the same
weight contour,

Various schemes of design modification can be generated by
combining the above mentioned directions and distances of travel.

EXAMPLE PROBLEM

Symmetric Waffle Plate

As an example problem illustrating the application of the structural
synthesis concept, consider a symmetric waffle plate subject to membrane
loading. (See Figures 1 and 3). The waffle is symmetric in the sense
that the stiffener spacing in the x direction equals the stiffener spacing
in the y direction and the x stiffener thickness eguals the y stiffener
thickness.

The waffle plate is fabricated from a solid plate by first applying
the appropriate protective coating and subjecting the plate to a chemi-
cally active etchant, This process, best known as chemical milling, has
recently become feasible on a production basise It has created the
capability for producing stiffened panels with orthogonal and skewed
Sets of stiffeners integral with each other and integral with the back
up sheet. Tt should be noted that all of the stiffeners are of the same
depth, thus creating a flush inner surface. In the past, stiffened
panels were fabricated by fastening stiffeners to the sheet, i.c.,
welding, riveting, etc, Fabrication problems led to some rather
awkward configurations(joggles, clips, etc.) for nonparallel sets of
stiffeners. The end result was that the design was difficult to
fabricate and inefficient in terms of weight. Integral orthogonal
stiffeners and sheets made it possible to realize significant weight
savings,

The advance in fabrication capability due to chemical milling has
created an interest in the analytical aspects of the problem, Because
Such structures were available for design applications, it became
necessary to develop an analysis capable of accurately predicting the
behavior of the structure., An analysis based on failure modes including
gross instability, local buckling and yielding is presented in Appendix B.

The total weight of the structure is chosen as the sole criterion
by means of which choices are made between various designs., It is
fortuitous that a merit function, so significant to the prime users of
such structures, is easily expressible mathematically, The concepts of
structural synthesis in no way necessitate the use of the weight function
as the merit function. If another measure, i.e., total cost, thermo-
dynamic or aerodynamic performance, is expressible mathematically, it
may be used in place of the total weight with no conceptual changes in
the synthesis techniques described herein,
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The design parameters selected for synthesis of symmetric waffle
plate are: tg, the sheet thickness; b,y the stiffener spacing; and t_ ,
the stiffener thickness.

Symmetric Waffle Behavior Functions
As an example of a behavior function consider the material yield

criterion as outlined in Appendix B. The waffle back-up sheet i1s on
the verge of failure if the following condition exists
2

1/2
2 2
<Nx - Nx Ny + NY > (Nx )
+ 3 —%- =
b b b, 2 b/ (819)
[pﬁ—) + (1 - Tr) (Ti: }

]
4

i

If the left-hand side is less than the value of Y, the design is
adequate, If it is greater than Y, the back-up sheet has yielded.
The left-hand side of Eqe (B19) is therefore already in the behavior
function form. One alteration is made to facilitate computer calcu-
1ation. The value of Y is taken to the left-hand side to give the
following expression:

1/2

2 2 2
<N - N_N_+ N_ > N
- x xy ¥
oT(0,) = i b o” v (1-,—:%1‘) <1
(@ a-2 6] )

Note that because of the nature of the function there is no lower limit.
Tt was found that all of the behavior functions have the same basic
characteristics

a. upper bound of unity
b. no finite lower bound
c. nonlinearly dependent upon the design parameters

The colurn matrix of behavior functions for a single load condition
can now be written as follows:



-1 -

(o) )

Sx(D_)
SY(D_)
EBF(DP)E =J eBF(D) L <
LBX(D )
LBY(D ) (7)

K\ LBP(D. ) ’J

where the elements of the behavior matrix represent the behavior functions
associated with the following failure modes:

AR - D - D o
-

g

GY(D_) -~ gross yield

SX(D_) =~ stiffener (X direction) yield

SY(D ) =~ stiffener (Y direction) yield
GBF(D_) ~ gross plate buckling
LBX(D_ ) « 1local stiffener buckling (X direction)
IBY(D ) - 1local stiffener buckling (Y direction)
1BP(D ~ local buckling of the back-up sheet

IR R

p)
In order for the behavior of a design to be acceptable, the above
criterion (7) must not be violated in any load condition. The inequality
of equation (7) is defined as follows:
Element by element the left-hand side of equation (7) must be

less than or equal to unity for the equation to be satisfied,
If any single element is greater than unity the inequality is

not satisfied,
Symmetric Waffle Weight Function
The total weight of the symmetric waffle plate, used as the merit
function, is written as follows:

ts t 2
W = abpH [1-(1-T)(l-b—w)] (8)
x

where ts, {. and bx are the design parameters and a, b, p, H are
defined”in tHe Tabld of Symbols.

Design Parameter Limits

The column vector locating any design point in the design parameter
space is defined as follows:
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t
s

o1 - b )

X

t
W

In general, there are three types of design parameter limits:
a, Fabrication limitations, e.ge, lower bounds on sheet and
stiffener thicknesses,

be analysis limitations, esge, upper bound on stiffener
spacinge.

ce compatibility constraints, e.ge, stiffener spacing must
be greater than the stiffener thickness.

The following are the matrix formulations of the upper and lower
bounds. The letters a, b and ¢ to the right of each element are the
types of limits defined above:

b_ c (10)
K2 a
{uLg = IbL ¢ and a
LKa a (11)

The bounds on the design parameters are employed as follows:

EDLE = (an} = {DU} (12)

A more complete discussion of the design parameter bounds for symmetric
waffle plate is presented at the end of Appendix Be
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Brief Statement of the Problem

Now that the bshavior functions and the merit function have been
defined for the symmetric waffle, the mathematical statement of the
example problem used in this study can be stated as follows:

Given H, p and [N] , the design load system as well as the
design requirements EDU} and EnDL‘(
< J

Find }:npg such that

Py o= [%1 o< Ind
[y ] < [2]

t t =2
W = pabH [1-(1-%)(1-3‘1) ]
X

assumes &4 minimum value.

and

and

Design Modification

Three basic programs were written for the synthesis of waffle plates
drawing on the techniques outlined previously. The first s Monte Carlo,
was found to be inadequate to solve the problem, because of relative
minima, The second, Compromise I, was inefficient in terms of computer
time, The last, Compromise II was found to be both adequate and efficient,
The following 1s a detailed description of all three programs,

Monte Carlo

As a first attempt, a modified Monte Carlo method was adopted for
the design modification process, The process is as follows:

as Propose a trial design and examine the behavior, If the
design is adequate, proceed, If not, propose a new trial
and repeat Step a.

be Orient a wnit wector from the current trial design to the
point of absolute minimum weight. This point is at the
intersection of the lower bounds of tg and tw and the
upper bound on bx'
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Ce Travel along this semi-intelligent direction until a
constraint surface is encounterede Accelerated
incremental motion is used to select the distance of
travel.

de Once the composite constraint surface is encountered use
a random number generator to select the direction cosines
of a new line of travels The random direction must ful-
f£ill two requirementse.

1. must not enter the region of violation
2. must not increase the merit function

Ce Once the composite constraint surface is encountered using
the random direction of travel a new random direction
must be chosen. This process is repeated until convergence
occurs and it is no longer possible to find an acceptable
random direction.

Inherent in this method is the assumption that there are no relative
minima in the design parameter space. It is readily seen that if there
are no relative minima then convergence to a unique optimum can be
accomplished regardless of the starting pointe It was found that the
assumption was not valid. Convergence to distinct optima did occur and
the final output design was greatly influenced by the initial triale A
case which exhibited two distinct optima was examined in greater detail.
A straight line was drawn between the two optimal points as shown in
Figure ho The behavior functions were examired at fixed increments
along the line, It was found that the gross behavior function increased
from the bounded value of unity as the increment moved the test point
away from the first optimum and then gradually decreased to unity as
the other optimum point was approacheds This test showed that pockets
exist in the gross behavior function and consequently in the composite
constraint surface, Therefore, it was concluded that the modified
Monte Carlo program was inadequate to synthesize waffle plates. It
became necessary to develop a method of piercing the constraint surface
to examine the possibility of relative minima pocketss

Compromise I

Compromise I was the first attempt at solving the synthesis problem
recognizing the existence of relative minima. The method or program was
named Compromise because it was the merger of two methods of direction
selection and two methods of distance determination. The program employs
the highly intelligent steepest descent direction of travel with an
incremental distance of travel whenmever the current trial design is free
and acceptable., Steepest descent motion proceeds until a constraint
surface is encountered. When the current design is bounded to a con-
straint surface a random number generator is used to select a direction,.
The intersections of this random direction with the current weight
contour are found and tested as trial designs. If one of these "side-step!!



~1) -

points is acceptable and free it is placed in permanent Storage and
steepest descent motion proceeds until a constraint surface is encountered,

Steepest Descent

The direction of travel in steepest descent is found by calculating
the components of the gradient to the weight surface s at each trial design
point.

2

t
aatw = (1- t_)E) pab (13)
s x
2t t t
aabw -..-..."ZI (1- ﬁsl) (1 - BE) pab H (1L)
x x X
t
'Sa_i—;L - .b_z_ (1 - —HE) (1- EE) pab H (15)
W x X

The above components of the gradient to the weight surface are
normalized as follows and are used as the direction cosines

¥y
oW
v, ST,
s W 2 W W 2 ()
\/(at) 3 *+ %)
S X w
W
b
Yo W X . (17)
2 2
oW oW W
\/(—‘ats &) Gt
L
Ve m %% (18)
W L\ AW AW 2
VEFD G - @

An increment of 0,0) was used for the steepest descent distance of
travels As the design point approaches a constraint surface it is
possible that this increment is too large, If this is the case, the
distance of travel is found by systematically halving the current distance
of travel until the design point lies on the constraint surface, with a
fixed tolerance e¢. Once the design point is on a constraint surface s 1t
is generally impossible to steep descend without piercing through the
constraint suwrface, A side-step or allernate step is then sought such that
tke merit function remains constant.
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Alternate Step

Figure 5 is a sketch of a planar slice through a design parameter
space. The plane is determined by a random line in the plane of t_ - b
and the current design point. Two random numbers are needed to de¥ermifie
the random line in the base plane and a third random member is used to
generate the direction of travel in the random plane. The design modifica-
tion using the random direction can be written as follows:

ts(i+1) - ts(i) .oy, A

(i41)

b
X X 2

(i+1) _ . (1)
1"w * h tw oo *3 &

where A 1is the distance to another point on the same weight contour.
Equate the weight of the 50 design to the weight of the (i+1)th

design
NCOHRN €D

cancelling common terms the result is as follows

2
b+ ¥y A t, ¥y b

t t_ 2
QA-7)a-2) = Q- (1- e
H bx H ) bx + 4, A )

(19)

Solve for the polynomial in 4.

2 %1

b o b, - ¥) 8

202 'l(b 2 | ts( ’
e gty - ) =B @) (- 1)

t |
SRR N R B SR (LS R LR

b
2
2 (=) (b -t (¥, = V)

t 2
+20_4, (1= ) (b = t) 1 A=0 (20)
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There is a common factor of A, indicating a zero root. This is
reasonable because the current design point is on the same weight
contour, Notice from Figure 5 that it is possible to construct a line
which intersects the weight contour at only one point, i.ee, the current
design pointe This particular line will yield a pair of complex roots
to the polynomial in A s Eqe (20)s If such a case is generated, the
computer program is written to immediately reject that direction and
generate three new random direction cosiness It should be mentioned
that the random consines are not independent in the sense that they are
generated by normalizing three random numbers,

R,
R (21)

’ B e
i 1/}: RZ?
i 1
where i = 1, 2, 3

and Ri are random numbers from minus to plus uwnity,

The zero root of the cubic equation (20) is dropped and the computer
program ireats the equation as a general quadratic. If complex roots
are gensrated they too are dropped and another set of random numbers
are generated. If real roots are found as the solution, they are then
employed to select an alternate step design point, If the resulting
design is a free acceptable point, the program returns to the steepest,
descent mode of travel until a constraint surface is encountered again,
The process is repeated until convergence to an optimum occurs. Since
the method either reduces the weight or holds it constant, it is not
possible for the sclution to diverge away from the desired optimun,

Proof of an Optimum

The major shortcoming of this technique, as with any search technique,
is the proof of the optimum. Once the program seems to have converged to
a minimum, the question asked is as follows:

Is this the absolute minimum or is it M"locked-in ', so to speak,
at a relative minimum? The same question can be stated with a
negative slant. Is it possible to find a direction, random or
otherwise, which will lead to a design point of equal or lower
weight, above the composite constraint surface?

Since there is no mathematical means of answering the positive
question, the latter must be used, A rather laborious but conclusive
means of answering the negative question would be to examine all
admissible designs of weight equal to the wight of the apparent optimum,
For the case of three independent design parameters, there is a second
order infinite set of design possibilities,



Since the behavior functions and the weight function are well behaved,
it is only necessary to examine designs at a finite increment, for the
fixed weight. If the current design is the only design in its weight contour
within the design parameter bounds, sufficient to sustain the loads, then
the current design must be regarded as the true opbimum,

This weight grid method was used for some of the preliminary worke.
After the computer program found an optimum from two starting points,
the optimum weight was used to generate a weight grid. In every case,
the weight grid showed that the apparent optimum was truly the absolute
minimume

Tnstead of examining a gridwork of admissible designs, a random
selection of designs at the current weight can be testede The more designs
tested, the higher the degree of confidence that the apparent optimum is
the true optimum. This test of the optimum can be accomplished by permitting
the computer to search for an alternate step after it has appeared to have
converged.

Another method of verifying the optimum, although it is not conclusive,
is to run the synthesis from two distinct trial design pointse. If the
synthesis paths are different but the final optimum is the same, within the
same computational tolerance, a degree of certainty can be achieved., The
method used for this study is a combination of the latter two methods, Each
design case is synthesized from two distinct trial points and once the pro-
posed optimum is reached the computer is permitted to run and randomly
examine the field of admissible designs of optimal weight. In this way, a
degree of confidence is developed in the optimum designe.

Compromise IT

Compromise II is an advanced and more intelligent version of its
predecessor, Compromise I. It was found that Compromise I consumed
computer time in searching through the random directions to find a line
which would yield another point on the same weight contours Compromise II
reduces the degree of randommess and examines only those directions which
will yield an alternate step within the design parameter bounds. There-
fore, it is more selective in its directions and consequently more
intelligent.

The random mumber generator is again employed to generate a random
line in the base plane bx -1t o This line is used in conjunction with the
current design point to genergte the random plane as was done in Compromise T.
Figure 6 shows that if an alternate step design exists within the design
parameter limits, it must be along the weight contour and within the
following bounds:

a. the tangent to the weight surface

be the design parameter bounds

c. the chords defined by the current design point and the
intersection of the weight contour and the design
parameter 1limitse.
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Notice that the existence of this design is independent of the
behaviore First, an alternate step design point within the design
parameter bounds must be found and then its behavior examined., If
the behavior is adequate, the alternate step point is accepted and
re-design is carried out along the line of steepest descent as described
in the steepest descent section for Compromise I, The only difference
between Compromise I and Compromise ITI is that in the latter the
selection of a direction for seeking an alternate step is substantially
more efficient,

Alternate Step

A random number generator is employed to select a random plane
parallel to the ts axis, as was done in Compromise I. Figure 7 shows
a view of the design parameter space looking down the t_ axis. Notice
that there are three distinct sets of random lines in the base plane,
That is, the random plane generated by *he random line and the current
design point, can intersect the design parameter bounds in three combing~-
tions,.

Case 1 =~ Upper bound on bx and
compatability boind (bx > th )

Case 2 -~ Lower bound on tw and
compatability bound (bx > tw)

Case 3 -~ Upper bound on bx and
lower bound on tw

The random line in the plane of bx - t_can be written mathematically
as follows: v

Bbx + th = Dc (22)
where
B = G
2
R+ R2
C = fa
2 2
yR, + R,
Ri are random numbers
and

D, is determined by evaluating (22)
at the current design point
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The components of the gradient to the weight surface are given
by equations (13) (1k) and (15) and are used to write an expression
for the plane tangent to the weight surface at the current design

1 tw 2 tw ts tw
g-g) b= | 25 A-p) Q-5 P
.4 x X
c c
+ 2_].;(1-_%)(1-.‘;_“.) t = X (23)
b H b W c
x x o

where the subscript c¢ indicates that the quantity within the brackets
must be evaluated at the current design point. Kc must also be deter=
mined at the current design pointe

Figure 8 is a view of a random slice through a design parameter
space showing the weight surface and a hypothetical composite constraint
surface. The plane of the paper is the plane determined by the random
line in the b_ - t_ plane and the current design pointe The type or
case of the random plane must be ascertained in order to determine the
appropriate design parameter boundse The following is a scheme for
classifying the types of random lines:

a. generate the random numbers R, and R, and solve
for B, C, and D_ -

b, set tw to zero and examine the resulting value of
b_o If bx is less than its lower bound or higher
than its upper bound, the random line is of Case 1.

ce if the above test fails the random line must be of
Case 2 or 3. Set b_ to zero and examine the
resulting t . If t is positive the random line
is of Case "2, If Hegative, it is Case 3.

Having once determined the case of the random line used to generate
the random plane, it is possible to solve for the coordinates of the
intersection of

a. the random plane, the tangent to the weight surface and
the appropriate design parameter bounds,.

be the random plane, the contour of the current weight and
the appropriate design parameter boundse

These coordinates are found by the simultaneous solution of the
expressions for the above mentioned surface, The points are subsequently
used to solve for an alternate step vector in the design parameter spaces
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In Figure 9, the tangent intersections are labeled (2) and (k)
while the weight contour intersections are labeled (1) and (3). The
current design point is labeled (5). Notice that an alternate step
direction of travel emanating from the current designand intersecting
the weight contour within the design parameter bounds must pass between
points (1) and (2) or points(3)and (L4). Compromise IT selects alter-
nate step directions of travel by first solving for a vector from point
(5) to point (1)s It adds to this base vector a fraction of the vector
from point (1) to point (2)s A similar vector is generated by using
points (3) and (L). It then normalizes the resulting vector and employs
the root finder polynomial (20), Only one root to the polynomial has
any significance, and that is the distance to a point on the same wight
contour along the line generated. The major asset to this method is
that the program wastes no time in generating and testing designs which
have no real physical significance. The program is more efficient
simply because it is more intelligent in its selection of an alternate
step direction of trawvel,

In order to solve for the coordinates of the intersections, it is
necessary to solve cquations (22), (23), (8) and the appropriate design
parameter bounds, simultanecusly., There are three design parameter
bounds, (tg =0, t, =0, by =(by )ax) and the necessary sets of
coordinates are as follows:

(a) Point 1 b, = (b))

. x/max
Dc - Bbx
1
k I R
¥
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c
& - § [ (l—apr) ]
S t 2
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N ] c abx c X, atw c ¥
%2 ()
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(d) Point 3 b = (b )

L.s X ' max
D ~-Bb
: _ C X3
W, c
wc
. = H[l-(l"a""EpH) :'
53 tw 3
3
1=~ —
x3

xll X ‘max
Dc - Bb
t = 4
W C
I

The coordinates of the intersections for the different cases of
random lines are as follows:

Gase 1 -~ coordinate sets (a) and (b)
Case 2 = coordinate sets (c) and (b)

Case 3 - coordinate sets (c) and (d)

The coordinates are used to generate a vector emanating from the
currents design to a region bounded by the tangent and the chord,
Figure 8 is another sketch of an arbitrary slice through the design
parameter space showing the weight contour and a hypothetical composite
constraint surface. Knowing the case of the random line, it is possible
to determine the coordinates of Points a, b, ¢ and de The alternate
step direction of trawvel is generated as follows:

1

L G-B) + oy (B-d) (2ha)

or

r, = (c-p) + v (d~2) (2hb)
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and ;1 = T;fr- (25a)
- r
W, = (25b)
|zl

when the bars indicate vectors and ¥ is a positive fraction less than
unitye It is possible to examine several points along the weight
contour between p and a or pand ¢ by using different values for yv.
If v is incremented from zero to unity the alternate step design point
moves along the contour from a to pe It is readily seen that is y is
incremented from unity, the first alternate step tested will be acceptable
unless the current point is a relative minimum. The synthesis path
will tend to creep down the side of the constraint surface, On the
other hand, if vy is incremented upward from zero the synthesis path
will tend to oscillate across the acceptable region. Both of these
incrementation schemes lead to a slow convergences The incrementation
of vy should lead to an alternate step design point which is not near
any constraint surface such that a maximum distance of travel can be
achieved in steepest descent. The following is the sequence of values
of v used in this worke

05000
047500
02500
06250
063750
0.8750
01250
000625
049375
0.03125

The sequence is arranged so that the alternate step direction
will tend to direct the path toward the center of the acceptable
region, If the current design point is in a large pocket the tendency
is for the alternate step to remain in that same pockete On the other
hand, if the design point is in a small pocket, it is possible for the
synthe sis path to leave that pocket if a more dominant relative mininmm
existse Figures 10 and 11 show flow charts for the analysis and the
Compromise II synthesis program respectively.

In summary, the method will select alternate step directions of
travel which lie in a random planc between an upper bound (the tangent)
and a lower bound (the chord}e If the design point is free, the synthesie
path is along an incremental steepest descent. Compromise II was found
to be considerably faster than Compromise I. Jdentical problems were
solved using both programs to compare running time. While Compromise I
needed approximately 90 minutes to solve a given problem, Compromise II
converged to the optimum in approximately 30 minutes. All programs were
written using the Runcible compiler and the Burroughs 220 Machine.



~2) -

The problem of proving an optimum is still present in Compromise
ITe« The method used is the same as that of Compromise I,

NUMERICAL RESULTS

Contained within this section are various numerical examples of
waffle synthesis examined as verification of the capability. The
output from the Monte Carilo program is presented only to show its
inadequacy in synthe sizing waffle plates. because of the existence
of relative minima., Compromise I, although capable of solving the
relative minima problem, was not used as a production program;
consequently, no output is presented, A1l remaining numerical results
were found using Compromise II,

Six sets of input data and optimal designs are presented in this
chapter. The problems are labeled

case i - j
where 1 is the number of load conditions and J is the case member.

Two synthesis paths are presented to show the design evolution
from the initial trial, through relative minima pockets, and on to the
final design,

It is important to remember that the only bound on the value of a
behavior function is an upper bound of unity. The values of the behavior
functions, significantly different from unity, are important only in the
sense that the structure is not on the verge of failure in that particular
mode, That is to say, the only behavior function bounds which have any
bearing on the optimum design are those which have values near unity.

An ¥* on numeric values is used to indicate those bounds which constrain
the optimum design., The design parameter symbols marked with * are
the optimal values,

A1l numerical work was carried out on Case's Burroughs 220 Digital
Computer using the Runcible compiler language,



INPUT DATA FOR CASES 1-1, 1-2

COMMON DATA

a = hOII

E = 10.5 x 10° ksi

Y = 7T2.0

ksi

( ~0430

M-I

"'Ooho
+0420

Total Depth (H) for each case

1-1

H Ooh n

TRIAL DESIGNS

Monte
Point A
ts 06300
bx 5000
tw k4,000
Point B
ts 04360
bx 5,000
t 04250

1-2
0.6

Case 1-1

Carlo

Comp IT

04300
56000

114000

and 1-3

30t

041C1 1bs/cueine

0.32

0.,0001

0.010

1-3

0.8 n

Case 1=2
Comp II

0.300
54000

114000

0,300
24000

1.950

(0.005

{Pp} - ‘UL

Case 1~3
Comp II

0,010
2,100

1,950

0.300
2,000

1.950




FINAL OUTPUT FOR CASES 1-1, 1-?, 1-3

Case 1-1 1-2 1-3
Monte Carlo Compromise II
Point A Point B
ts* 042803 0.0838 0.2803 040397 04018
b Le373L 54251k 13735 2.5339 2,7709
tw* 0.0101 242969 0.,0101* 042358 0,0848
w* 34,0346 3643188 34.03L6 1648585 10,9123
0.,02L48 0.0617 0.0218 0.1330 04130k
0.0149 0.,0188 0.0149 0.0h5h 00,0614
0.0198 00250 0.0198 0.0605 0.0818
* .3 * 3 * 3%
BF 0,9996 1,0000 09996 1,0000 0.9961
0.036h 040000 0.036) 0.00k0 0,0723
001485 0.0000 0.0L85 0.0053 0.096)

*
0.0157 00,1029 0.0157 0.7010 0,9969
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INPUT DATA FOR CASES 3-1, 3-2 and 3-3

COMMON DATA
a = 70 11t b = 50 11
H = 0.,5Mn ¢ = 0,0001
-0.30 +0,50 ~1,00
[N] = ~0430 =060 0.00
0.00 -'.;..00 -O.L‘,O
j H 0,005
LTI CARR
k bx 0,010

MATERTAT, PROPERTIES FOR EACH CASE

Case 3-1 Case 3=2 Case 3-3

E (ksi) 10.5 x 10° 30,0 x 10° 16 x 10°
Y (ksi) 72 150,0 120,0
p (1bs/cu.in) 0.101 04276 0.160
I 0e32 0,283 0,290
TRIAL DESIGN

Point A Point B

by = 0,100 by = 04400

bx = 5.000 bx = 2.000

L, = 144000 " 1.950



CASE 3-1
FINAL OUTPUT
POINT A

't-*

s
*
b
X

0.0106
0.0106
0.0106
[er] = | o.808
0.0176
0.0176

04,0026

POINT B
t
b

Mo Uy

[ 0.0106
0.0106
040106
[er] = | o.oum
0,0192
0.0192

04,0020

[}

0.3942
3.1821

0.0697
0,0176
0.0211
0.9701
-0.029}
0.0353

040003

043941
2.8271

040697
0,0176
0,0211
0.9706
~0.0320
0,038k

0,0003

PROGRAM ~ COMPROMISE II

t* = 0,0108%

W
We = 139.6039

040428
060352
060000
0.9997™
0.,0588

0,0000

0.00L3

0.,010L*

ct
H

x5,

= 13905998

o.ohza—_
040352
040000
1.0000%
0,0640

0,0000

04003k
_
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CASE 3-2 PROGRAM - COMPROMISE IT
FINAL OUTPUT
POINT A
£ = 040520 t;‘ = 0,6421
b = 3.7051 w¥ = 187.1947
[ 0,0154 0,2276 041027 |
0,015k 0,0257 0,051k
04015k 040309 040000
[BF] - | 0.8132 0.975) 1.0000%
040000 ~0,0002 040003
0.0000 +0,0002 0.0000
Lo.1500 0.0963 04261l
POINT B
£ = 0,0495 tF = 046459
by = 3.675 w® =187.3800
[ 0.0155 042382 0,1066 |
040155 0.0259 040518
0.0155 0.0311 0,0000
[BF] - 045432 0.9575 1.0000%
0,0000 =0,0002 040003
0.0000 0.0002 0,0000
Lo.:uszh 0,1178 042852 1




CASE 3«3

FINAL OUTPUT

POINT A

=]-

*
tS

L
040072
040072
0,0072
08408
0.0348
040348

00,0012

POINT B

]

L

t*

3
x

b
b d

0,0072
0.0072
00072
0.8408
00272
040272

0.,0021

0e3Ub7
40717

0.,0478
0.0121
0.0145
0.9701
=0,0579
0,0695

0.,0007

0e3hk5
249069

0.0478
0.0121
0.0145
0.9701
04,0453
0,0543
04000l

PROGRAM -~ COMPROMISE IT

*

*
tW

040099

*

W = 193,650

04029}
0.02l41
04,0000
069996
0.1159

0.0000

0.0070

t* =
w

w* = 193,571

00,0112

00,0294
0.0242
0.0000
0.9997%
06,0905
00000

060036




TABLE 1
SYNTHESIS PATH

CASE 1-1 PROGRAM - COMPROMISE IT
Cycle b b t, W
1 043000 540000 14N00 U7.9952
2 0,033 540872 3.8836 16,0138
3 0.1722 503338 3.7397 16,0138
b 0.0348 5e3679 3,6905 lha1581
5 01149 5eANS1 346217 Lh2581
6 040351 5e62h3 345995 L2,7630
7 0.2142 4o 9150 2.h388 42,7630
8 0,0531 4.0316 2e1051 371435
9 041221 540286 241502 37614135
10 00997 5.0307 241453 36,4125
11 0.0978 5e2017 2472331 36,1125
12 0.0782 561701 242943 3641125
13 06,0779 541702 2,292 36,400l
1k 0.,0929 5e2392 242547 36415004
15 0.,0019 52393 2475kh5 36,3626
16 0.2758 562711 04523l 3643626
17 042669 562712 00,5229 3543855
18 0.279h 343337 0.1785 35.3855
19 0.2736 343337 0.1781 3he 7558
20 062802 3.762h 0.10h5 3he7558
21 062771 34762k 0.1043 3443970
22 0.280h Le2093 040595 3443970
23 042738 12093 0.059) 344203k
2h 042805 ho3L60 0.0310 3114203k
25 0.2796 L3160 0.0310 3Le1206
26 042805 43711 0,0156 34,1006
27 0.2801 L3711 0.0156 31440535
28 042803 43735 0,0117 34,0535
29 02802 Le3735 0.0117 3440346

042803 143735 0.0101 34,0346

(V)
(&)
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CASE 3-3

Cycle

O ® 3 0N B W

AN AT \ ST (U T N T 0 =
cuFLURIESEEREREFERES

tS

0.14000
00500
0.2113
0.0519
0.138L
0,053l
062675
040525
0.1377
0,0911
041097
0,109}
0.0980
0.0971
0,1018
0.3383
0e337h
Oe3Lh2
043413
0e3Lk7
043432
003449
0+3hh1
043450
043hhé
043h47

TABIE 2
SYNTHESIS PATH

bx

50000
5.1283
543778
5eh227
546508
5+6709
49569
1.9825
5.0812
540858
5el611
S.1612
541603
5el60h
5e2467
Le1035
11035
L1355
ha1355
ho0262
L0262
ho0520
h+0520
L0716
keO716
LeOT717

PROGRAM -~ COMPROMISE TI

t
w

10000
348343
306836
3.6171
3e55h6
34522}
243540
24299k
240402
240285
1.9854
1.9853
20302
2,0300
2.0453
0.1746
01746
0.0906
0.,0903
040hL9
00lhs7
0.0227
040226
0.011)
0.011)
040099

W

27767600
2639557
26349557
252,176}
252,176k
2hh 1024
2h)14102)
20743220
20743220
197.2403
19742403
197.1718
197.1718
196,971k
1964571h
196.971h
196,5287
196.5287
19449753
19449753
194,1170
194,1170
19346832
193,6832
193.4650
193.4650



RESULTS AND DISCUSSION

This section is subdivided into two major sections: the examina-
tion of the results to show the characteristics of synthesis and the
discussion of results in conjunction with certain preconceived notions
of waffle designe

Two basic waffle plates are studied in detail., The first set is
subjected to a single load condition and the design requirements are
varied by changing the total depth of the structure., The second set
of waffle plates is subjected to three load conditions and the design
requirements are varied by changing the material properties. This
second set of design problems shows how a structural synthesis capability
may be used as a scientific aid in the selection of a material to do a
specific job, The materizgls selected for the study are only typical
alloys of aluminum, titanium and steel.

Synthesis Characteristics
Monte Carlo
Case 1-1 was synthesized using the first computer program Monte

Carlo, It was found that the starting point had a significant influe
ence on the final optimum. For example, when

ts = 0,3000
bx = 5,0000
tw = }1,0000

was used as the starting point, the final output was:

*

Point A to = 0.2803
3*
bx = h0373h
£* = 0.,0101
w
Ww* = 34,0346

and when

ts = 0.3600
b = 50000
b, = 042500

was used as the initial trial, the resulting output was
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Point B
8 = 0.0838
bY = 5,251k
t:‘ = 2.2969
W* = 36,3488

Notice that the two resulting designs, although different in weight
by only 6 percent, are radically different in configuration, This is
the first indication of the possibility of a relative minimum. Several
other starting points were tried but each time the final output was
either Point A or Be A highly specialized computer program, which
examined the designs along a straight line between Points A and B, was
then written, It was found that this trace in the design parameter
space went under the composite constraint surface into the region of
violation and more important re-entered the acceptable region, This
indicates that there are relative minima pockets in the composite
constraint surface when plotted in the design parameter space. It
was observed that these two relative minima were both bounded by the
gross buckling constraint surface. In fact, the whole region of the
composite surface between the two relative minima could be attributed
to the gross buckling constraint. Therefore, the relative minima are
not necessarily created by union of the individuwal behavioral con-
straints into the composite surface but can be generated by an indi=-
vidual surface, The relative minima in the individual constraint
surfaces are due to the polynomial nature of the analysis expressions,

A close examination of the expressions for the flexural and
torsional rigidities and the sub-critical buckling expressions shows
that the gross buckling behavior is not dependent upon the specific
values of 4y, and by but only the ratio /gi e The expression for
a constant weight surface also has this characteristic. Therefore,
it is possible to map the gross buckling constraint surface for a
constant weight by a simple incremental variation to t,/b, . A
second specialized computer program was written employing these
characteristicse. The procedure 1s as follows:

a. select a weight for a design problem (eege, Case 1-1
use the higher of the two relative nﬁnimas

bs calculate the design for a maximum t_/b_ratio, i.e.,
minimum ts’ and examine the behavior of this design

Ce reduce'tw/bx by some fixed increment examining each
design until t,/bx reaches a minimum value.
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The output from this program indicates relative minima pockets
even for a constant weight, Therefore, the relative minima pockets
also exist in the corresponding weight spaces The cubic nature of
the gross buckling behavior function indicates there is a maximum of
three values of sheet thickness for a fixed weight, thus indicating
the relative minima are possible within a single constraint surface.

There are several other characteristics which can be studied for
single load condition cases

ae the thin sheet relative minimum design may be governed
by a single constraint surface. It is not necessarily
true that the optimum design be at the intersection of
two or more constraint surfaces.

be if a second constraint surface is active in the thin
sheet relative minimum pocket, it will be the local
buckling of an individual panel; or the lower bound
on the sheet thickness,

Co the thick sheet relative minima design on the other
hand will, in general, lie at the intersection of
two constraints:

le gross buckling
and
2+ local stiffener buckling or stiffener thickmess
lower bounde.

Although it is not obvious, it is not possible at the outset to
determine or predict which of the two distinct relative minima will be
the absolute minima., The optimum design for Case 1~ 1 is a thick sheet
design bounded by gross buckling and stiffener thickness lower bounde.
In this case the true optimum is most likely a plane sheet withouil
stiffeners,

Case 1= 2, on the other hand, has several relative minima within
the thin sheet design pocket. The Monte Carlo program found the
relative minima by starting from different initial trial pointse. These
sub-relative minima pockets are due to the polynomial nature of the
expressions for the local buckling behavior of the sheet,

Because of the existence of both the relative and the sub-relative
minima the Monte Carlo program is inadequate to synthesize waffle plates.
Since the final output is so heavily dependent upon the initial trial,
it is impractical to use the Monte Carlo program to find all relative
minima and choose the optimum. Therefore, it was necessary to develop
a scheme of hopping from pocket to pocket, or piercing the constraint
surfaces to examine hidden points,
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Compromise I

Compromise I, described previously, has the capability of solving
the relative minima problem, Because of the method of selecting
alternate step directions of travel the running times were rather high,
For example, a typical single load condition case required approximately
90 minutes of computer time, Compromise II reduced the running time
by a factor of three and consequently Compromise I was not used as a
production programe

Compromise II

The bulk of the production resulis was generated with the
Compromise II waffle synthesis program., Case 1~ 1 synthesized with
the Monte Carlo program was repeated using the Compromise II and
converged to the thick sheet design, the lower of the two relative
minima found with the Monte Carlo programe

The results substantially support the argument that Compromise IT
will converge to the absolute minimum within a field of relative minima,

The optimum design for Case 1= 3 is a thin sheet designe The values
of the behavior functions indicate that the optimum 1ies at the intere
section of the gross buckling and local sheet buckling constraint surfaces,

Tables 1 and 2 are syntheses paths, i.e., complete histories of design
evolution, Case 1-1 starts from the initial trial of

ts = (043000 b:r = 5,000 tw =  }4,000
and after 15 design cycles converged to an upper relative minima of
ts = 0,0919 bx = 542393 tw = 242545

It 1s interesting to note the correspondence of this intermediate
point with the final output Point B of Case 1-1 as synthesized with
the Monte Carlo programe The next alternate step

g = 0.,2768 bx = 5,2711 tw = 0,523k

is in the thick sheet design region. The synthesis path continues in
this same region of the design parameter space until it converges to
the absolute minimum at

ts = 0,2803 bx = }43735 tw = 00,0101

This final optimum is identical to the final output Point A of Case 1-1
as synthesized with the Monte Carlo program,
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Cases 3~1, 3=-2 and 3-3 are design problems where the waffle
plates are subjected to three sets of load conditions, The final
optimum designs are balanced designs for the three load condition
systeme.

The motivation for developing a synthesis capability for multiple
load conditions is twofold:

a. the optimum design may be controlled by constraints of
more than one load condition (e.g. the optimum design
may lie at the intersection of the gross buckling
constraint of load condition No. 1 and local sheet
buckling constraint of load condition No. 3.)

be at the outset of most design problems involving a
multiplicity of load conditions it is usually not
possible to predict with certainty that a single
load condition will dominate. In those cases where
it is known that a single load condition will control
the optimum design it is rarely possible to predict
with confidence the dominant load condition

The task of establishing the existence of a dominant load condition,
as well as the dominant load condition, is particularly complex since
the design is not fixed, All of the mrograms generated for this study
have the capability of handling five sets of design load systems. The
programs consider the effects of all sets of loads and designs accordinglye.
The optimum designs of Cases 3-1, 3-2 and 3-3 are each controlled by a
single load conditione

Compare, for each case, the results of starting from two trial
design pointse In general the corresponding coordinates of each set
of optima agree within a few percent. The greatest discrepancy occurs
in the by design parameter, Tt is important to note that by appears
almost invariably in the denominator of the analysis expressions thus
lending a hyperbolic character to its influence. In general, the design
will be out in the flat portion of the hyperboloide Therefore, there
is not a strong dependency of the behavior and weight of this design
parameters The double points are considered sufficiently close to
consider these results as the absolute minima and conclude that
Compromise II successfully synthesizes waffle plates.

Table 2 is a synthesis path of Case 3-3. Starting from an initial
trial of

ts = 0,4000 bx = 5,000 tw =  }1,000
the synthesis path converged to

ts = 0,1018 bx = 5,2L67 tw = 240453



after 15 design cycles. This point was found to be at the bottom of
an upper relative minimum pockete The next alternate step

t_ = 0.3383 bx = L.1035 tw = 0,17h6

S

move the design into the thick sheet design r egion. The synthesis
path then converged to the thick sheet optimum

ty = 0o3Lk7 b= L.OT71h t, = 0.0099
The program successfully distinguished between two relative minima
where the difference in the weight was only 3 percent.

Waffle Design Concepts

The following is a list of comments generated as a result of
studying the various optima. Whenever possible, comparison with
preconceived notions is included,

Compare case 1-1, 1-2 and 1-3, Case 1-1 is constrained to a
total depth, H of 2,4 "', and the optimum weight is 3L.03l6. If this
requirement is relaxed to 0.6 ' as in Case 1~2, the optimum weight
reduces to 16,8585 amounting to a weight savings of over 100 percent.
If the total depth is further increased to 0.8, as in Case 1-3, the
optimum decreases still further to 10.9L23 amounting to an additional
weight savings of over 50 percent. This conflict of welight versus
total depth available for a stiffened panel often exists. The results
presented here indicate dramatically the weight savings which can
be accomplished by increasing the total depth of the structure,

Notice, too, that the basic nature of the design shifts with
increasing He When H is constrained to O.L "', the optimum design
is a thick sheet design, but when H = 0,6 or 0,8 it is a thin
sheet design of considerably lower weight,

When the total depth is severely limited (eege, H = O.Li ") it
is found more advantageous to increase both the twisting and bending
stiffness by adding to the sheet thickness rather than to increase
Jjust the bending stiffness by adding to the stiffeners.

Since the weight-strength character of waffle plates is so highly
dependent upon H, it is suggested that in the future H be treated as
a design parameter with appropriate upper and lower bounds. At first
one might think that the optimum would always lie at the upper bound
on H, but this is not necessarily so. As H increases, an additional
design conflict becomes active. If H gets too large, the local
stiffener buckling behavior becomes critical.
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Case 1=3 is bounded by two active constraints, gross buckling
and local sheet buckling. Local stiffener buckling will not be
active because of the lower bound on t, unless the total depth H is
increased, It may be possible, although a case has not been found
as yet, that an optimum design be bounded by all three buckling
criterion,

Optimum shift and design type shift may occur as a consequence
of a material change. The optimum design for Case 3-1 (aluminum) is
a thick sheet design of weight 139.50 pounds. Moving up the density
scale, Case 3-3 (titanium) has as its optimum a thick sheet design
of weight 193.)7. Notice from Table 2, cycle 15 that this case has
a competitive thin sheet design of 196.97. Moving further up the
density scale, Case 3-2 (steel) has a thin sheet optimum weight of
187.19. The Monte Carlo program was used, with a prejudiced starting
point, to find the thick sheet relative minimum pocket for Case 3-2
(steel). The results were as follows:

t = 042788 b, = 3,0260 1, = 04,0118
S X W
W = 270.9)432

These results clearly indicate that the optimum weight and design
type may shift due to material change.

CONCLUSIONS

The conclusions may be stated simply as follows:

Based on the analysis presented in Appendix B the success-
ful development of a synthesis capability for symmetric waffle
plates with integral orthogonal stiffeners is reported.

It is thought that the method developed may be applied
with minor modifications to a wide variety of systems with a
non-linear merit function, regardless of the existence of
relative minima., Completion of the symmetric waffle synthesis
program supports the contention that a structural synthesis
capability can be developed for complex structural systems of
current and future importance.

A secondary set of conclusions are derived andappear in the £ orm
of recommendations for future work on analysis and synthesis.
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The background study in preparation for dewveloping a synthesis
process is essentially a study of the existing technology and there-
fore points up the shortcomings and absence of applicable analyses.
The following is a list of aspects of the analysis which merit further

study:

de

Study of the interaction expression for three inplane
loads over a wide range of aspect ratios.

A study to more clearly define the range of applicability
of the equivalent plate concept, Further study to deter-
mine the appropriate buckling pattern when the equivalent
plate theory is not applicable,

A study of the assumed boundary conditions used for the
local buckling criterion of both stiffener and sheet,

A study of the stress distribution in the stable waffle
plate based on a theory of elasticity solution,

Based on the results of the synthesis study, the following is a
set of recommendations for future work on synthesis:

3e

be
Ce

de

Use the current version of Compromise II to examine further
the characteristics of the optimum design.

Develop more conclusive techniques for proving an optimum,
Develop and test more efficient methods of travel.

Increase the number of design parameter to six by permitting
an unsymmetric stiffener configuration.

Engineering Division
Case Institute of Technology
Cleveland, Ohio, August 1, 1962

This investigation was conducted at Case Institute of Technology
under Grant NsG-110-61, and with the financisl assistance of the
National Aeronautics and Space Administration.
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APPENDIX B

GOVERNING TECHNOLOGY OF SYMMETRIC WAFFLE PIATES

The first step in developing a procedure for minimum weight
balanced design of integrally stiffened waffle plates is to put
together a method of analysis which adequately predicts the behavior
of such plates. The governing technology to be used to develop a
synthesis capability for integrally stiffened waffle-like plates is
given in this Appendix, While no detailed derivations are presented,
the specialization of expressions to apply to the synthesis of
orthogonally stiffened waffle plates is outlined., A discussion of
the assumptions and restrictions imposed by the analysis is incorporated
into the presentation of the analysis,

Orthotropic Plate Equations

Many researchers, (see Bibliography, Appendix A), have studied
individual characteristics of integrally stiffened f%ag plates,
cylinders and curved panels, Dow, Libove, and Hubka derive the
formilas for the elastic constants of the equivalent orthotropic
plate. This analysis facilitates the use of orthotropic plate theory
for the class of flat structures known as integrally stiffened
waffle~like plates, Since the investigation is restricted to flat
rectangular waffle plates with simply supported edges, subject to
any combination of inplane loads N_, N_and N s the governing
differential equation is: 'y Xy

b I 2 2
3w 3w O W 0 W d W
D + 2D +D + N + 2N, s
v Py Pyt X a4t ™ o3y
2
+N 2 ¥ .5 (B1)
Yy 2 yz

The gross instability of the equivalent plate is studied employing
a linear elastic buckling technology and the assumed mode technique
and hence can be viewed as an eigenvalue problem.

Gross Buckling of a Waffle Plate

The gross buckling behavior of the waffle plate is studied by
first transforming the waffle plate to its equivalent orthotropic
plate via the elastic constants and then employing a linear elastic
analysis to determine the buckling loads. The assumed mode used
throughout the study is:
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wix) - I EAmnsinn;x sinmgy (B2)
m

which was reduced from the general trigonometric Fourier Seriese

The interaction expressions for several cases of isotropic
plates subject to combinations of two inp%éﬁ loads can be found
in the literature, Bleichl 3 ) and Gerard give expressions for
flat isotropic plates with moderate aspect ratios a, = a/ove

These interaction equations enjoy substantial experimental
support over the range of aspect ratio

%<ar<3

Lekhnitski( >) gives the same interaction expression for
orthotropic plates subject to combinations of two inplane loadse

A single interaction expression can be conjectured from these
interaction expressionse.

N N N
X 4 y__ . T—SL - 1 (B3)
Tﬁx)cr (Ny)cr ny cr

Tt is readily apparent that this expression reduces to the
accepted interaction expression for any combination of two inplane
loads, applied to flat orthotropic and isotropic platese

Since the combined interaction expression reduces to all
possible sub-cases it may be considered as a proposed interaction
formula for flat orthotropic plates subject to any combination of
three inplane loads Ny , N_ and Nx e A first analysis, using the
differential equations (81) and as¥umed modes (B2), has been
completed, Although only a few terms were retained in the series,
the results gave support to equation (B3) as the correct expressions
While the proposed interaction expression (B3) shows promise it is
not firmly established as yet.

Since any synthesis process must be based on accepted analysis,
the composite interaction expression (B3) can currently be used with
confidence only for design load systems made up of any combination
of two loads. It is intended that the synthesis capability developed
be based on (B3) and apply for design load systems made up of any
combination of two loads. At the same time this synthesis capability,
based on the most plausible analysis available, will be capable of
handling design load systems made up of three inplane forces.
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In order to use the interaction expression (B3) it is necessary
to have expressions for the individual critical loads (N )cr’ (N.)

3
and (N__) x yer
xy’cr

Instability of Orthoiropic Plates Subject to a Single Inplane Load

Nx’ Ny or ny.

Expressions for the buckling loads of orthotropic plates subject
to the single inplane loads, N> N_ and N__, are needed for the inter=
action expression (B3)s The general methoa”of attack, outlined above,
is employed throughout using the differential equation (B1) with the

proper applied load terms deleted and the assumed mode (B2) .

Iekhnitski(S ) gives the expression for orthotropic plate buckling
under normal load Ny« Notice that the expression for (Ny-)cr can also
be derived from the expression for (Nx) r by a simple permutation of
subscripts and an exchange of a ' = 1/a_. The expression for N_ is

r T x
as follows:

2
2 (Z)
Dl m?

(Bk)
where m' is the integer yielding to the smallest value of Nxo

A simple permutation of subscripts and interchange of variables
yields the following:

;
/o o[ /b 2D D 2
¥ Y Y, 2 2 3 1 1
(o dop = = T oo (Pra) 4 —— 5 (57a)
y a 1 VI) p T

D 2
(BS)

1 2

where p' is the integer yielding the smallest value of Nyo

Notice that both of the expressions will yield negative values
for (N,) r and (N )cr° This is a consequence of the sign convention
assumed Yor the agblied loads (See Fig 3 )

Seydel( 6) presents a study of the instability of simply supported
orthotropic plates under an inplane shear loading. The following
notation is used as a means of simplifying the expressions for shear
buckling
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The following definitions apply only for 8 > 1 which is always
true for waffle plates,.

4L /D 2 2
9‘% A —D—l- m(m,rl)=(rr1[3)h+2-(—“1@%———1"—+nh
2
h D, D23
ny= +Ca N 5 (86)
&)

where m and n are integer parameters of the assumed mode expansione

One additional restriction is that the value of B must always be
between zero and unity. Since Dy equals D, this means that the protlem
must always be cast such that the aspect ratio, a/b, be greater than
unitye

Ca is a buckling coefficient given by the following expressions:
forn "= 1, 2, 3 and m =g, Q+1, g+ 2.

Case I

Symmetric buckling with q odd

or
Antisymmetric buckling with q even
b 1/2 < 2
c = X f elq +1, 2) ) q 1 .
a 178 L 2 {g+1) B L 2q + 1 9¢ (q, 1)
2 Va1
—9 s 2te 1 ‘ 9 ?>
25¢ (a, 3) 2q + 3 99 (q + 2, 1) 2% (a+2, 3)¢
D,
(B7)
Case II
Symmetric buckling with q even
or

Antisymmetric buckling with q odd

c = uh ( 1 J( 1 + 9
a 18 < 2 (q+1)B 99 (g + 1, 1) 25 (q+1, 3)
\

A

2
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-1/2
X q . (g +2)°
(2q + D% ¢ (q, 2) (2q +3)% ¢ (q + 2, 2)

(B8)

Notice that there exists a unique expression for Ca for both
symmetric and antisymmetric buckling. Stein and Neff(7%) showed
that either the symmetric or antisymmetric mode can be critical
depending upon a,., the aspect ratio, This is also true for ortho-
tropic plates bu€ the dependency is upon B where B = v D175;.
The critical value of Nyy must therefore be determined Trom two
complete sets of mode parameters., That is, given the values of
® and B as data, determine the minimum magnitude of Nxy as a function
of the integer parameter q and gross buckling pattern (symmetric
or antisymmetric).

The above expressions are used in conjunction with the inter-
action expression (B3) to give the necessary technology to predict
the gross buckling behavior of simply supported waffle plates, This
analysis constitutes a major portion of the governing technology upon
which the synthesis capability is based. Up to this point the analysis
has dealt only with orthotropic plates, in generals In order to use
the analysis it is necessary to transform the waffle plate into an
equivalent orthotropic plate. The equations of the elastic const t§
used for this transformation were derived by Dow, Libove and Hubkal2),

Elastic Constants for the Equivalent Plate

The gross buckling phenomenon of the waffle plate is studied by
generating an equivalent plate and studying the buckling characteristic
of this equivalent plate. A detailed derivation of the transformation
is outlined in Ref. 2. The basic assumptions or restrictions necessary
to make this transformation are as follows:

l. The rib spacings of the integrally-stiffened plate are
small in comparison with the overall width and length
of the plate. This assumption is made in order that the
average or overall behavior may be studied rather than a
detailed study of any particular segments Several studies
have been made where the rib spacing was large (i.e., one,
two or even three ribs in either or both directions), In
this case the behavior cannot be examined on a gross scale
but a detailed elastic stability study of the interacting
subsystems has to be performed.

2. This particular analysis is concerned with waffle plates
with only longitudinal and transverse ribs. The expressions
for the elastic constants are specialized from those given
in Ref, 1. Tt is important to notice that the restriction
in no way limits the gross instability analysis. In order
to extend this study to include skewed stiffeners, only a
modification of the expressions for the elastic constants
would be necessary.
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3, Since the shear stress, Tyys 1S zero at the outer boundary
of each stiffener, it is assumed that the shear stress T
is zero throughout each stiffener. The total shear load
therefore must be carried by the back-up sheete.

he The formulas for the equivalent elastic constants involve
coefficients a, B, a' and B! which define the effective~
ness of a rib in resisting transverse stretching and
bending and inplane shearing and twisting.

The terms B and B' represents that fraction of the volume of a
rib resisting stretching and shearing respectively. The terms a and
a! locate the centers of gravity of these effective volumes. The
lower bound of zero is assumed for B and B' and consequently the
values of a and a'! are immaterial.

Consider a waffle plate with only one set of stiffeners, subject
to a load N, which is transverse to the stiffeners, It is readily
apparent that the normal stress in the sheet midway between twor ibs
is Nx/t if the stiffener spacing is large compared to the stiffener
thickness. It is also true that the normal stress in the vicinity of
a rib is lower than the normal stress midway between two ribs. However,
a uniform normal stress equal to that at the midpoint is assumed to
exist throughoute That is, it is assumed that a rib has no effect on
the stress distribution generated by a transverse loade

With the above restrictions, consider the elastic constants used
in the previous section to study the gross buckling phenomenon. The
expressions for the flexural rigidities and torsional rigidity for the
symmetric waffle are:

. 1 b3 4 £ 3t
B, = D, = EH {12 ch (—g-) + 5 Q --Ifi) (Bi)
b bt
et - P R
8 (1 -p°) i b bt
igsz Cﬁ—) +p (1 --ﬁ—) CB;“)
. - e (89)

i vy L
T+n Cﬁ-) +p (1 - Tr) (E;)
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and a3
2D, = E i S L (EE)
s 7 (3= H
% £t 2
T ) | - 6]
i t U % 2
1 s s W s
——(F) + -2 (FE) | - | S
[(l - l-"z) H H bx ] [(1 - |.Lz) H ]

(B10)

Local Buckling of a Waffle Plate

Two distinct modes of local buckling of waffle plates are considered,
Examine the case where the stiffeners are thin compared to the sheet,
Then it is possible for the sheet to undergo a stable inplane displace=-
ment while the stiffeners become unstable in a mode comparable to flange
buckling, On the other hand, if the sheet is thin compared to the
stiffencrs, it is possible for each individual panel to buckle as a
rectangular plate while the stiffeners undergo a stable inplane deflection,
In both cases the mathematical model is a rectangular isotropic plate,

Consider the case of stiffener instability which occurs when the
stiffener thickness is small compared to the sheet thickness,

The model used for analysis is the portion of a longitudinal
stiffener between two adjacent transverse stiffeners. The boundary
conditions are taken as follows: hinged ends, hinged on one edge and
free on the other edge. The applied load is a uniformly distributed
normal load applied along the hinged ends of the plate,

The expression for critical loads are as follows:

t 2 bt _+t (H-t )
(ﬁx)cr - D! (g -wts ) { — bxw - J Ky (B12)
and ( )
t 2 bt +t (Hat
ey --uzn:(H_:s) [ Sb" s]xB (312)
X
where :
1 2
b -t
Q -
H - ¢
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Consider the case of sheet instability which occurs when the
sheet thickness is small compared to the stiffener thickness. The
mathematical model used for this system is a rectangular isotropic
plate bounded by two transverse stiffeners and two longitudinal
stiffeners which are assumed to provide hinged boundary conditions.
Since it is possible for the sheet to carry all three inplane loads
Nx’ Ny and ny, the interaction expression

2

N N N
- + __..l—_—'. + -———-—-Z-——” X = ] (B lh)
( Nx )cr ( Ny )cr ( ny) cr

must be used to predict the instability of the back-up sheet.

For this case the expressions for (Nx)cr’ (Ny)cr and (ny)cr
are as follows:
2 t_ b_+t (H=t )
s n D s x v s
= - )00
() k [ - ]

x’cr 2
b (bx - tw) x

(B15)

(F) = = k0O

7> D [ 1":sx bx + tw (8 - ts) ]
2

yer t_ (b =-t) b
5 V' x W x (B16)
- nz E t83
(For = 2930 | (817)

12 (1 ~p°) b_- tw)2

The above expressions give the equations necessary to predict
local waffle plate instability when it occurs as stiffener or sheet
buckling. The one remaining mode of failure is the material yield
criterion which is presented in the next section.

Material Yield Criterion

Under normal applications the design of waffle plates is governed
by a buckling criterion. Since the synthesis process is developed
from a linear theory of elastic buckling, it is necessary to know when
the final design is such that the analysis is not valid and an inelastic
buckling theory should be employed. A material yield criterion is used
as an alarm to determine when the final design is not governed by the
elastic buckling constraints. Because of the nature of the synthesis
preceess, it is possible for an intermediate design to be governed by
material yield criterion. If the re~design process continues and finds
a new design which is governed by an elastic buckling constraint,



In short, the analysis

the intermediate design is subsequently discarded,
assumes ideal elastic-plastic behavior of the structural material.

The distortion energy criterion, employed as the material yield alarm,

is as follows: 1
2 2 2 2
o - o ay + oy + BTxy a Y (B18)

The expressions for stresses are substituted into (B18) to give

1
< q: - N_N_+ N 2> N 2 z
Y Y s + 3 ({:ﬁr) (B19)

[+ - ) g2

Y=1

The ordering of principal stresses is unnecessary and the above
expression is valid regardless of the magnitude or sign of the applied

loads,.
A uniaxial state of stress exists in each stiffener and the distortion

energy criterion reduces to:
T = %ax = %min
Since the coefficient relating stress to load is always positive
the stiffener yield criteria can be expressed as
(B20)

bx
1= |le [tsbx+ tv&]

(B21)

b
T - Inyl 'L;‘s bx +x tw d :]

for the symmetric configuration of stiffeners,
The foregoing expressions (B19) (B20) and (B21) give the analysis
necessary to predict material yield,



Side Constraints

Any assumption or restriction which is not imposed automatically
by the analysis must be provided for as an independent side constraint
in the synthesis process, as is done in any design process. For example,
in order to use the equivalent elastic constants, it was assumed that
the rib spacing is small in comparison with the overall length and width
of the plate, The analysis, as such, does not impose this restriction,
Therefore, it must be incorporated into the synthesis process as

a

b, < 7 (B22)
1
b

bx < X, (B23)

where K, is a constant greater than unity and directly related to the
minimum number of stiffeners,

In preparing a synthesis process, all mathematically possible
but physically absurd designs must be anticipated and prevented through
the use of independent side constraints, For example, it is physically
impossible for the stiffener spacing to be less than the stiffener
thickness, but there is no mathematical restriction inherent to the
analysis imposing this requirement. Therefore, a lower bound is placed
on the stiffener spacing as:

A second lower bound is placed on by. Due to production considera-
tions it may be impossible to produce a waffle plate with a stiffener
spacing less than some fixed value regardless of the dimension of ty.
Therefore, a fixed lower bound of Kg is also used and the mathematical
statement of this lower bound is as follows:

Only one of these statements is necessary for if Kg > ty and by > Ky
then it follows that by > ty e The procedure is to select the larger
of Kg and 4 and use this as a lower bound, bL'

b > bL (B2k)
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Another example of a compatability bound arises because of the
absence of an inherent upper bound on the sheet thickness. Mathe-
matically it is possible for the sheet thickness to become greater
than the total depth of stiffener plus sheet, i.e., the stiffeners
assume a negative depth. Therefore, an upper bound is incorporated
as

t, < H (B25)

to prevent a design which is physically absurd.

Independent side constraints can arise from restrictions external
to the waffle analysis. For example, if the smooth side of the waffle
is to be used as an aerodynamic surface, it would be undesirable for
the sheet thickness to vanish. Therefore, a lower bound is placed on
the sheet thickness as

t. > K (B26)
where K, is an arbitrary constant,

If K, 1s set to zero, this lower bound can be considered as a constraint
which prevents a physically absurd design i.e., negative sheet thickness,

A lower bound is also placed on the stiffener thickness as

t, > K, (B27)

where K, is an arbitrary constant,

If K3 is set to zero it prevents a physically absurd design, i.e.
negative stiffener thickness.

The need for some of the above mentioned side constraints is
inherent to the synthesis concept. The mathematical formulation of
an analysis to be used solely to predict the behavior of a structure
may properly assume the existence of a physically attainable structure.
However, when an analysis is to be used as a component part of a
synthesis process, wherein redesign is to take place automatically,
care must be exercised in assuring that only physically attainable
designs are permitteds This then is one role played by what have been
called side constraintse

Development of a synthesis capability for orthogonally stiffened
waffle plates based on the technology presented herein will deal with
design parameters which are actual dimensions of the structure, consider
the effects of local and over-all instability on the behavior, and
include a substantial number of side constraintse A flow chart
summarizing the analysis used as a component part of the synthesis
program is shown in Fig. 10,
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